On positive weak solutions for a class of weighted (p(.), q(.))−Laplacian systems
نویسندگان
چکیده
منابع مشابه
On Positive Solutions for a Class of p-Laplacian Problems
We consider the system ⎧ ⎪ ⎨ ⎪ ⎩ −Δ p u = λf (v) in Ω −Δ q v = μg(u) in Ω u = v = 0 on ∂Ω (I) where Δ p u = div(|∇u| p−2 ∇u), Δ q v = div(|∇v| q−2 ∇v), p, q > 1, Ω is the open unit ball in R N , N ≥ 2 and ∂Ω is its boundary. We establish upper and lower estimates for possible positive solutions of system(I).
متن کاملExistence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملExistence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator
The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.
متن کاملPositive radial solutions for p-Laplacian systems
The paper deals with the existence of positive radial solutions for the p-Laplacian system div(|∇ui| ∇ui) + f (u1, . . . , un) = 0, |x| < 1, ui(x) = 0, on |x| = 1, i = 1, . . . , n, p > 1, x ∈ R . Here f , i = 1, . . . , n, are continuous and nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1|ui|, f i 0 = lim‖u‖→0 f(u) ‖u‖p−1 , f i ∞ = lim‖u‖→∞ f(u) ‖u‖p−1 , i = 1, . . . , n, f = (f1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Moroccan Journal of Pure and Applied Analysis
سال: 2019
ISSN: 2351-8227
DOI: 10.2478/mjpaa-2019-0010